Skip to content

返回目录

集群(cluster)

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。

  • :集群中的一个 Elasticearch 实例
  • :索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中

    解决问题:数据量太大,单点存储量有限的问题。

    image-20200104124440086

    此处,我们把数据分成3片:shard0、shard1、shard2

  • 主分片(Primary shard):相对于副本分片的定义。

  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!

为了在高可用和成本间寻求平衡,我们可以这样做:

  • 首先对数据分片,存储到不同节点
  • 然后对每个分片进行备份,放到对方节点,完成互相备份

这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:

image-20200104124551912

现在,每个分片都有1个备份,存储在3个节点:

  • node0:保存了分片0和1
  • node1:保存了分片0和2
  • node2:保存了分片1和2

1、搭建ES集群

我们会在单机上利用docker容器运行多个es实例来模拟es集群。不过生产环境推荐大家每一台服务节点仅部署一个es的实例。

部署es集群可以直接使用docker-compose来完成,但这要求你的Linux虚拟机至少有4G的内存空间

首先编写一个docker-compose.yml 文件,内容如下:

bash
version: '2.2'
services:
  es01:
    image: elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data02:/usr/share/elasticsearch/data
    ports:
      - 9201:9200
    networks:
      - elastic
  es03:
    image: elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic
    ports:
      - 9202:9200
volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

es运行需要修改一些linux系统权限,修改/etc/sysctl.conf文件

sh
vi /etc/sysctl.conf

添加下面的内容:

sh
vm.max_map_count=262144

然后执行命令,让配置生效:

sh
sysctl -p

通过docker-compose启动集群:

sh
docker-compose up -d

2、集群状态监控

kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂。

这里推荐使用cerebro来监控es集群状态,

官方网址:https://github.com/lmenezes/cerebro

下载解压即可使用,非常方便。

启动服务

bash ./bin/cerebro

访问http://localhost:9000 即可进入管理界面:

输入你的elasticsearch的任意节点的地址和端口,点击connect即可:

绿色的条,代表集群处于绿色(健康状态)。

image-20210602221914483

3、创建索引库

1)利用kibana创建索引库

在DevTools中输入指令:

json
PUT /blog
{
  "settings": {
    "number_of_shards": 3, // 分片数量
    "number_of_replicas": 1 // 副本数量
  },
  "mappings": {
    "properties": {
      // mapping映射定义 ...
      "title": {
        "type": "text",
        "analyzer": "ik_smart"
      }
    }
  }
}

2)利用cerebro创建索引库

利用cerebro还可以创建索引库

1、填写索引库信息

2、点击右下角的create按钮

回到首页,即可查看索引库分片效果:

4、集群脑裂问题

4.1、集群职责划分

elasticsearch中集群节点有不同的职责划分:

image-20210723223008967

默认情况下,集群中的任何一个节点都同时具备上述四种角色。

但是真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求第
  • data节点:对CPU和内存要求都高
  • coordinating节点:对网络带宽、CPU要求高

职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

一个典型的es集群职责划分如图:

image-20210723223629142

4.2、脑裂问题

脑裂是因为集群中的节点失联导致的。

例如一个集群中,主节点与其它节点失联:

image-20210723223804995

此时,node2和node3认为node1宕机,就会重新选主:

image-20210723223845754

当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。

当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:

image-20210723224000555

解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选。集群中依然只有1个主节点,没有出现脑裂。

4.3、小结

master eligible节点的作用是什么?

  • 参与集群选主
  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

data节点的作用是什么?

  • 数据的CRUD

coordinator节点的作用是什么?

  • 路由请求到其它节点

  • 合并查询到的结果,返回给用户

5、集群分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?

5.1、分片存储测试

插入三条数据:

json
# 新建索引库
PUT http://127.0.0.1:9201/blog
Content-Type: application/json

{
  "settings": {
    "number_of_shards": 3,
    "number_of_replicas": 1
  },
  "mappings": {
    "properties": {
      "title": {
        "type": "text"
      }
    }
  }
}

### 

POST http://127.0.0.1:9201/blog/_doc/1
Content-Type: application/json

{
    "title": "第1条数据"
}

### 

POST http://127.0.0.1:9201/blog/_doc/2
Content-Type: application/json

{
    "title": "第2条数据"
}

### 

POST http://127.0.0.1:9201/blog/_doc/3
Content-Type: application/json

{
    "title": "第3条数据"
}

测试可以看到,三条数据分别在不同分片:

json
POST http://127.0.0.1:9201/blog/_search
Content-Type: application/json

{
    "explain": true,
    "query": {
        "match_all": {}
    }
}

结果:

json
{
    "took": 570,
    "timed_out": false,
    "_shards": {
        "total": 3,
        "successful": 3,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": {
            "value": 3,
            "relation": "eq"
        },
        "max_score": 1.0,
        "hits": [
            {
                "_shard": "[blog][1]",
                "_node": "5iaSJX--Tc2wtVfarY6R2A",
                "_index": "blog",
                "_type": "_doc",
                "_id": "2",
                "_score": 1.0,
                "_source": {
                    "title": "第2条数据"
                },
                "_explanation": {
                    "value": 1.0,
                    "description": "*:*",
                    "details": []
                }
            },
            {
                "_shard": "[blog][1]",
                "_node": "5iaSJX--Tc2wtVfarY6R2A",
                "_index": "blog",
                "_type": "_doc",
                "_id": "3",
                "_score": 1.0,
                "_source": {
                    "title": "第3条数据"
                },
                "_explanation": {
                    "value": 1.0,
                    "description": "*:*",
                    "details": []
                }
            },
            {
                "_shard": "[blog][2]",
                "_node": "aQi2CpOTSBGoNq2xpFMhvw",
                "_index": "blog",
                "_type": "_doc",
                "_id": "1",
                "_score": 1.0,
                "_source": {
                    "title": "第1条数据"
                },
                "_explanation": {
                    "value": 1.0,
                    "description": "*:*",
                    "details": []
                }
            }
        ]
    }
}

5.2、分片存储原理

elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

shard = hash(_routing) % number_of_shards

说明:

  • _routing默认是文档的id
  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

新增文档的流程如下:

image-20210723225436084

解读:

  • 1)新增一个id=1的文档
  • 2)对id做hash运算,假如得到的是2,则应该存储到shard-2
  • 3)shard-2的主分片在node3节点,将数据路由到node3
  • 4)保存文档
  • 5)同步给shard-2的副本replica-2,在node2节点
  • 6)返回结果给coordinating-node节点

6、集群分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片

  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

image-20210723225809848

7、集群故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

1)例如一个集群结构如图:

image-20210723225945963

现在,node1是主节点,其它两个节点是从节点。

2)突然,node1发生了故障:

image-20210723230020574

宕机后的第一件事,需要重新选主,例如选中了node2:

image-20210723230055974

node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3:

image-20210723230216642

故障测试

bash
# 停止es01 节点
docker-compose stop es01

# 启动es01 节点
docker-compose start es01