Skip to content

模板

1.1 模板的概念

模板就是建立通用的模具,大大提高复用性

例如生活中的模板

  • 一寸照片模板
  • PPT模板

模板的特点:

  • 模板不可以直接使用,它只是一个框架
  • 模板的通用并不是万能的

1.2 函数模板

C++另一种编程思想称为 泛型编程 ,主要利用的技术就是模板

C++提供两种模板机制: 函数模板类模板

1.2.1 函数模板语法

函数模板作用:

建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚拟的类型来代表。

语法:

cpp
template<typename T>
函数声明或定义

解释:

  • template: 声明创建模板

  • typename: 表面其后面的符号是一种数据类型,可以用class代替

  • T: 通用的数据类型,名称可以替换,通常为大写字母

示例:

cpp
//交换整型函数
void swapInt(int& a, int& b) {
	int temp = a;
	a = b;
	b = temp;
}

//交换浮点型函数
void swapDouble(double& a, double& b) {
	double temp = a;
	a = b;
	b = temp;
}

int main() {

	int a = 10;
	int b = 20;
	
	swapInt(a, b);

	cout << "a = " << a << endl;
	cout << "b = " << b << endl;

	return 0;
}

利用模板实现交换

cpp
//利用模板提供通用的交换函数
template<typename T>
void mySwap(T& a, T& b)
{
	T temp = a;
	a = b;
	b = temp;
}


int main() {

	int a = 10;
	int b = 20;
	
	//1、自动类型推导
	mySwap(a, b);

	//2、显示指定类型
	mySwap<int>(a, b);

	cout << "a = " << a << endl;
	cout << "b = " << b << endl;

	return 0;
}

总结:

  • 函数模板利用关键字 template
  • 使用函数模板有两种方式:
    • 自动类型推导
    • 显示指定类型
  • 模板的目的是为了提高复用性,将类型参数化

1.2.2 函数模板注意事项

注意事项:

  • 自动类型推导,必须推导出一致的数据类型T,才可以使用

  • 模板必须要确定出T的数据类型,才可以使用

总结:

  • 使用模板时必须确定出通用数据类型T,并且能够推导出一致的类型

示例:

cpp
//利用模板提供通用的交换函数 class 或者 typename 
template<class T>
void mySwap(T& a, T& b)
{
	T temp = a;
	a = b;
	b = temp;
}


// 1、自动类型推导,必须推导出一致的数据类型T,才可以使用
void test01()
{
	int a = 10;
	int b = 20;
	char c = 'c';

	mySwap(a, b); // 正确,可以推导出一致的T
	//mySwap(a, c); // 错误,推导不出一致的T类型
}


// 2、模板必须要确定出T的数据类型,才可以使用
template<class T>
void func()
{
	cout << "func 调用" << endl;
}

void test02()
{
	//func(); //错误,模板不能独立使用,必须确定出T的类型
	func<int>(); //利用显示指定类型的方式,给T一个类型,才可以使用该模板
}

int main() {

	test01();
	test02();

	return 0;
}

1.2.3 函数模板案例

案例描述:

  • 利用函数模板封装一个排序的函数,可以对不同数据类型数组进行排序
  • 排序规则从大到小,排序算法为选择排序
  • 分别利用char数组和int数组进行测试

总结:模板可以提高代码复用,需要熟练掌握

示例:

cpp
//交换的函数模板
template<typename T>
void mySwap(T &a, T&b)
{
	T temp = a;
	a = b;
	b = temp;
}


template<class T> // 也可以替换成typename
//利用选择排序,进行对数组从大到小的排序
void mySort(T arr[], int len)
{
	for (int i = 0; i < len; i++)
	{
		int max = i; //最大数的下标
		for (int j = i + 1; j < len; j++)
		{
			if (arr[max] < arr[j])
			{
				max = j;
			}
		}
		if (max != i) //如果最大数的下标不是i,交换两者
		{
			mySwap(arr[max], arr[i]);
		}
	}
}

template<typename T>
void printArray(T arr[], int len) 
{
	for (int i = 0; i < len; i++) {
		cout << arr[i] << " ";
	}
	cout << endl;
}

void test01()
{
	//测试char数组
	char charArr[] = "bdcfeagh";
	int num = sizeof(charArr) / sizeof(char);
	mySort(charArr, num);
	printArray(charArr, num);
}

void test02()
{
	//测试int数组
	int intArr[] = { 7, 5, 8, 1, 3, 9, 2, 4, 6 };
	int num = sizeof(intArr) / sizeof(int);
	mySort(intArr, num);
	printArray(intArr, num);
}

int main() {

	test01();
	test02();

	return 0;
}

1.2.4 普通函数与函数模板的区别

普通函数与函数模板区别:

  • 普通函数调用时可以发生自动类型转换(隐式类型转换)
  • 函数模板调用时,如果利用自动类型推导,不会发生隐式类型转换
  • 如果利用显示指定类型的方式,可以发生隐式类型转换

示例:

cpp
//普通函数
int myAdd01(int a, int b)
{
	return a + b;
}

//函数模板
template<class T>
T myAdd02(T a, T b)  
{
	return a + b;
}

//使用函数模板时,如果用自动类型推导,不会发生自动类型转换,即隐式类型转换
void test01()
{
	int a = 10;
	int b = 20;
	char c = 'c';
	
	cout << myAdd01(a, c) << endl; //正确,将char类型的'c'隐式转换为int类型  'c' 对应 ASCII码 99

	//myAdd02(a, c); // 报错,使用自动类型推导时,不会发生隐式类型转换

	myAdd02<int>(a, c); //正确,如果用显示指定类型,可以发生隐式类型转换
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:建议使用显示指定类型的方式,调用函数模板,因为可以自己确定通用类型T

1.2.5 普通函数与函数模板的调用规则

调用规则如下:

  • 如果函数模板和普通函数都可以实现,优先调用普通函数
  • 可以通过空模板参数列表来强制调用函数模板
  • 函数模板也可以发生重载
  • 如果函数模板可以产生更好的匹配,优先调用函数模板

示例:

cpp
//普通函数与函数模板调用规则
void myPrint(int a, int b)
{
	cout << "调用的普通函数" << endl;
}

template<typename T>
void myPrint(T a, T b) 
{ 
	cout << "调用的模板" << endl;
}

template<typename T>
void myPrint(T a, T b, T c) 
{ 
	cout << "调用重载的模板" << endl; 
}

void test01()
{
	//1、如果函数模板和普通函数都可以实现,优先调用普通函数
	// 注意 如果告诉编译器  普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到
	int a = 10;
	int b = 20;
	myPrint(a, b); //调用普通函数

	//2、可以通过空模板参数列表来强制调用函数模板
	myPrint<>(a, b); //调用函数模板

	//3、函数模板也可以发生重载
	int c = 30;
	myPrint(a, b, c); //调用重载的函数模板

	//4、 如果函数模板可以产生更好的匹配,优先调用函数模板
	char c1 = 'a';
	char c2 = 'b';
	myPrint(c1, c2); //调用函数模板
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:既然提供了函数模板,最好就不要提供普通函数,否则容易出现二义性

1.2.6 模板的局限性

局限性:

模板的通用性并不是万能的

例如:

cpp
template<class T>
void f(T a, T b)
{ 
	a = b;
}

在上述代码中提供的赋值操作,如果传入的a和b是一个数组,就无法实现了

再例如:

cpp
template<class T>
void f(T a, T b)
{ 
	if(a > b) { ... }
}

在上述代码中,如果T的数据类型传入的是像Person这样的自定义数据类型,也无法正常运行

因此C++为了解决这种问题,提供模板的重载,可以为这些特定的类型提供具体化的模板

示例:

cpp
#include<iostream>
using namespace std;

#include <string>

class Person
{
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}
	string m_Name;
	int m_Age;
};

//普通函数模板
template<class T>
bool myCompare(T& a, T& b)
{
	if (a == b)
	{
		return true;
	}
	else
	{
		return false;
	}
}


//具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型
//具体化优先于常规模板
template<> bool myCompare(Person &p1, Person &p2)
{
	if ( p1.m_Name  == p2.m_Name && p1.m_Age == p2.m_Age)
	{
		return true;
	}
	else
	{
		return false;
	}
}

void test01()
{
	int a = 10;
	int b = 20;

	//内置数据类型可以直接使用通用的函数模板
	bool ret = myCompare(a, b);
	if (ret)
	{
		cout << "a == b " << endl;
	}
	else
	{
		cout << "a != b " << endl;
	}
}

void test02()
{
	Person p1("Tom", 10);
	Person p2("Tom", 10);
	//自定义数据类型,不会调用普通的函数模板
	//可以创建具体化的Person数据类型的模板,用于特殊处理这个类型
	bool ret = myCompare(p1, p2);
	if (ret)
	{
		cout << "p1 == p2 " << endl;
	}
	else
	{
		cout << "p1 != p2 " << endl;
	}
}

int main() {

	test01();

	test02();

	system("pause");

	return 0;
}

总结:

  • 利用具体化的模板,可以解决自定义类型的通用化
  • 学习模板并不是为了写模板,而是在STL能够运用系统提供的模板

1.3 类模板

1.3.1 类模板语法

类模板作用:

建立一个通用类,类中的成员 数据类型可以不具体制定,用一个虚拟的类型来代表。

语法:

cpp
template<typename T>
class ClassName{
	
};

解释:

  • template --- 声明创建模板

  • typename --- 表面其后面的符号是一种数据类型,可以用class代替

  • T --- 通用的数据类型,名称可以替换,通常为大写字母

总结:类模板和函数模板语法相似,在声明模板template后面加类,此类称为类模板

示例:

cpp
#include <string>

//类模板
template<class NameType, class AgeType> 
class Person
{
public:
	Person(NameType name, AgeType age)
	{
		this->mName = name;
		this->mAge = age;
	}

	void showPerson()
	{
		cout << "name: " << this->mName << " age: " << this->mAge << endl;
	}

public:
	NameType mName;
	AgeType mAge;
};

void test01()
{
	// 指定NameType 为string类型,AgeType 为 int类型
	Person<string, int>P1("孙悟空", 999);
	P1.showPerson();
}

int main() {

	test01();

	return 0;
}

1.3.2 类模板与函数模板区别

类模板与函数模板区别主要有两点:

  • 类模板没有自动类型推导的使用方式
  • 类模板在模板参数列表中可以有默认参数

总结:

  • 类模板使用只能用显示指定类型方式
  • 类模板中的模板参数列表可以有默认参数

示例:

cpp
#include <string>

//类模板
template<class NameType, class AgeType = int> 
class Person
{
public:
	Person(NameType name, AgeType age)
	{
		this->mName = name;
		this->mAge = age;
	}
	void showPerson()
	{
		cout << "name: " << this->mName << " age: " << this->mAge << endl;
	}

public:
	NameType mName;
	AgeType mAge;
};

//1、类模板没有自动类型推导的使用方式
void test01()
{
	// Person p("孙悟空", 1000); // 错误 类模板使用时候,不可以用自动类型推导
	Person <string ,int>p("孙悟空", 1000); //必须使用显示指定类型的方式,使用类模板
	p.showPerson();
}

//2、类模板在模板参数列表中可以有默认参数
void test02()
{
	Person <string> p("猪八戒", 999); //类模板中的模板参数列表 可以指定默认参数
	p.showPerson();
}

int main() {

	test01();

	test02();

	system("pause");

	return 0;
}

1.3.3 类模板中成员函数创建时机

类模板中成员函数和普通类中成员函数创建时机是有区别的:

  • 普通类中的成员函数一开始就可以创建
  • 类模板中的成员函数在调用时才创建

总结:类模板中的成员函数并不是一开始就创建的,在调用时才去创建

示例:

cpp
class Person1
{
public:
	void showPerson1()
	{
		cout << "Person1 show" << endl;
	}
};

class Person2
{
public:
	void showPerson2()
	{
		cout << "Person2 show" << endl;
	}
};

template<class T>
class MyClass
{
public:
	T obj;

	//类模板中的成员函数,并不是一开始就创建的,而是在模板调用时再生成

	void fun1() { obj.showPerson1(); }
	void fun2() { obj.showPerson2(); }

};

void test01()
{
	MyClass<Person1> m;
	
	m.fun1();

	//m.fun2();//编译会出错,说明函数调用才会去创建成员函数
}

int main() {

	test01();

	system("pause");

	return 0;
}

1.3.4 类模板对象做函数参数

学习目标:

类模板实例化出的对象,向函数传参的方式

一共有三种传入方式:

  • 指定传入的类型 --- 直接显示对象的数据类型
  • 参数模板化 --- 将对象中的参数变为模板进行传递
  • 整个类模板化 --- 将这个对象类型 模板化进行传递

总结:

  • 通过类模板创建的对象,可以有三种方式向函数中进行传参
  • 使用比较广泛是第一种:指定传入的类型

示例:

cpp
#include <string>

//类模板
template<class NameType, class AgeType = int> 
class Person
{
public:
	Person(NameType name, AgeType age)
	{
		this->mName = name;
		this->mAge = age;
	}
	void showPerson()
	{
		cout << "name: " << this->mName << " age: " << this->mAge << endl;
	}

public:
	NameType mName;
	AgeType mAge;
};

//1、指定传入的类型
void printPerson1(Person<string, int> &p) 
{
	p.showPerson();
}

void test01()
{
	Person <string, int >p("孙悟空", 100);
	printPerson1(p);
}

//2、参数模板化
template <class T1, class T2>
void printPerson2(Person<T1, T2>&p)
{
	p.showPerson();
	cout << "T1的类型为: " << typeid(T1).name() << endl;
	cout << "T2的类型为: " << typeid(T2).name() << endl;
}

void test02()
{
	Person <string, int >p("猪八戒", 90);
	printPerson2(p);
}

//3、整个类模板化
template<class T>
void printPerson3(T & p)
{
	cout << "T的类型为: " << typeid(T).name() << endl;
	p.showPerson();

}
void test03()
{
	Person <string, int >p("唐僧", 30);
	printPerson3(p);
}

int main() {

	test01();
	test02();
	test03();

	system("pause");

	return 0;
}

1.3.5 类模板与继承

当类模板碰到继承时,需要注意一下几点:

  • 当子类继承的父类是一个类模板时,子类在声明的时候,要指定出父类中T的类型
  • 如果不指定,编译器无法给子类分配内存
  • 如果想灵活指定出父类中T的类型,子类也需变为类模板

示例:

总结:如果父类是类模板,子类需要指定出父类中T的数据类型

cpp
template<class T>
class Base
{
	T m;
};

//class Son:public Base  //错误,c++编译需要给子类分配内存,必须知道父类中T的类型才可以向下继承
class Son :public Base<int> //必须指定一个类型
{
};


int main() {

	Son c;

	return 0;
}
cpp
template<class T>
class Base
{
	T m;
};

// 类模板继承类模板 ,可以用T2指定父类中的T类型
template<class T1, class T2>
class Son2 :public Base<T2>
{
public:
	Son2()
	{
		cout << typeid(T1).name() << endl;
		cout << typeid(T2).name() << endl;
	}
};

int main() {

	Son2<int, char> child1;

	return 0;
}

1.3.6 类模板成员函数类外实现

学习目标:能够掌握类模板中的成员函数类外实现

总结:类模板中成员函数类外实现时,需要加上模板参数列表

示例:

cpp
#include <string>

//类模板中成员函数类外实现
template<class T1, class T2>
class Person {
public:
	//成员函数类内声明
	Person(T1 name, T2 age);
	void showPerson();

public:
	T1 m_Name;
	T2 m_Age;
};

//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {
	this->m_Name = name;
	this->m_Age = age;
}

//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {
	cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}

void test01()
{
	Person<string, int> p("Tom", 20);
	p.showPerson();
}

int main() {

	test01();

	system("pause");

	return 0;
}

1.3.7 类模板分文件编写

学习目标:

掌握类模板成员函数分文件编写产生的问题以及解决方式

问题:

类模板中成员函数创建时机是在调用阶段,导致分文件编写时链接不到

解决:

  • 解决方式1:直接包含.cpp源文件
  • 解决方式2:将声明和实现写到同一个文件中,并更改后缀名为.hpp,hpp是约定的名称,并不是强制

总结:主流的解决方式是第二种,将类模板成员函数写到一起,并将后缀名改为.hpp

示例:

1、类模板分文件编写.cpp中代码

cpp
// person.h
#pragma once
#include <iostream>
#include <string>

using namespace std;

template<class T1, class T2>
class Person {
public:
    Person(T1 name, T2 age);

    void showPerson();

public:
    T1 m_Name;
    T2 m_Age;
};
cpp
// person.cpp
#include "person.h"

//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {
    this->m_Name = name;
    this->m_Age = age;
}

//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {
    cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}
cpp
// main.cpp
#include<iostream>
using namespace std;

// #include "person.h" // 直接引入 .h 文件会提示报错
#include "person.cpp" // 解决方式1,包含cpp源文件

int main() {
    Person<string, int> p("Tom", 10);
    p.showPerson();

    return 0;
}

2、将声明和实现写到一起,文件后缀名改为.hpp

person.hpp中代码:

cpp
// person.hpp
#pragma once

#include <iostream>
#include <string>

using namespace std;

template<class T1, class T2>
class Person {
public:
	Person(T1 name, T2 age);
	void showPerson();
public:
	T1 m_Name;
	T2 m_Age;
};

//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {
	this->m_Name = name;
	this->m_Age = age;
}

//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {
	cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}
cpp
// main.cpp
#include<iostream>

//解决方式2,将声明和实现写到一起,文件后缀名改为.hpp
#include "person.hpp"

using namespace std;

int main() {
    Person<string, int> p("Tom", 10);
    p.showPerson();

    return 0;
}

1.3.8 类模板与友元

学习目标:

掌握类模板配合友元函数的类内和类外实现

  • 全局函数类内实现 - 直接在类内声明友元即可

  • 全局函数类外实现 - 需要提前让编译器知道全局函数的存在

总结:建议全局函数做类内实现,用法简单,而且编译器可以直接识别

示例:

cpp
// main.cpp
#include <string>
#include <iostream>

using namespace std;

template<class T1, class T2>
class Person {
    // 1、全局函数配合友元 类内实现
    friend void printPerson(Person<T1, T2> &p) {
        cout << "printPerson" << endl;
    }
};

int main() {
    // 1、全局函数在类内实现
    Person<string, int> p;
    printPerson(p);

    return 0;
}
cpp
// main.cpp
#include <string>
#include <iostream>

using namespace std;

//2、全局函数配合友元  类外实现 - 先做函数模板声明,下方在做函数模板定义,在做友元
template<class T1, class T2>
class Person;

// 如果声明了函数模板,可以将实现写到后面,否则需要将实现体写到类的前面让编译器提前看到
template<class T1, class T2>
void printPerson2(Person<T1, T2> &p) {
    cout << "printPerson2" << endl;
}

template<class T1, class T2>
class Person {
    //全局函数配合友元  类外实现
    friend void printPerson2<>(Person<T1, T2> &p);
};


int main() {
    //2、全局函数在类外实现
    Person<string, int> p;
    printPerson2(p);

    return 0;
}

1.3.9 类模板案例

案例描述: 实现一个通用的数组类,要求如下:

  • 可以对内置数据类型以及自定义数据类型的数据进行存储
  • 将数组中的数据存储到堆区
  • 构造函数中可以传入数组的容量
  • 提供对应的拷贝构造函数以及operator=防止浅拷贝问题
  • 提供尾插法和尾删法对数组中的数据进行增加和删除
  • 可以通过下标的方式访问数组中的元素
  • 可以获取数组中当前元素个数和数组的容量

总结:

能够利用所学知识点实现通用的数组

示例:

myArray.hpp中代码

cpp
#pragma once
#include <iostream>

using namespace std;

template<typename T>
class MyArray {
public:
    // 构造函数
    MyArray(int capacity) {
        cout << "MyArray" << endl;
        this->capacity = capacity;
        this->size = 0;
        this->data = new T[capacity];
    }

    // 拷贝构造
    MyArray(const MyArray &other) {
        cout << "MyArray copy" << endl;
        this->clone(other);
    }

    //重载= 操作符  防止浅拷贝问题
    MyArray &operator=(const MyArray &other) {
        cout << "MyArray operator=" << endl;
        this->clean();
        this->clone(other);
        return *this;
    }

    //重载[] 操作符  arr[0]
    T& operator [](int index)
    {
        return this->data[index]; // 不考虑越界,用户自己去处理
    }

    //尾插法
    void PushBack(const T & val)
    {
        if (this->capacity == this->size)
        {
            return;
        }
        this->data[this->size] = val;
        this->size++;
    }

    //尾删法
    void PopBack()
    {
        if (this->size == 0)
        {
            return;
        }

        this->size--;
    }

    //获取数组容量
    int GetCapacity()
    {
        return this->capacity;
    }

    //获取数组大小
    int	GetSize()
    {
        return this->size;
    }
    ~MyArray() {
        cout << "~MyArray" << endl;
        this->clean();
    }

private:
    T *data;
    int size;
    int capacity;

    void clean() {
        if (this->data != NULL) {
            delete[] this->data;
            this->data = NULL;
        }
        this->capacity = 0;
        this->size = 0;
    }

    void clone(const MyArray &other) {
        this->capacity = other.capacity;
        this->size = other.size;
        this->data = new T[other.capacity];

        // copy data
        for (int i = 0; i < this->size; i++) {
            this->data[i] = other.data[i];
        }
    }
};
cpp
// main.cpp
#include <string>
#include <iostream>
#include "my_array.hpp"

using namespace std;


int main() {
    MyArray<int> arr1(3);
    MyArray<int> arr2(arr1);
    MyArray<int> arr3(5);
    arr3 = arr1;

    return 0;
}